Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae.
نویسندگان
چکیده
Administration of selenium in humans has anticarcinogenic effects. However, the boundary between cancer-protecting and toxic levels of selenium is extremely narrow. The mechanisms of selenium toxicity need to be fully understood. In Saccharomyces cerevisiae, selenite in the millimolar range is well tolerated by cells. Here we show that the lethal dose of selenite is reduced to the micromolar range by the presence of thiols in the growth medium. Glutathione and selenite spontaneously react to produce several selenium-containing compounds (selenodiglutathione, glutathioselenol, hydrogen selenide, and elemental selenium) as well as reactive oxygen species. We studied which compounds in the reaction pathway between glutathione and sodium selenite are responsible for this toxicity. Involvement of selenodiglutathione, elemental selenium, or reactive oxygen species could be ruled out. In contrast, extracellular formation of hydrogen selenide can fully explain the exacerbation of selenite toxicity by thiols. Indeed, direct production of hydrogen selenide with D-cysteine desulfhydrase induces high mortality. Selenium uptake by S. cerevisiae is considerably enhanced in the presence of external thiols, most likely through internalization of hydrogen selenide. Finally, we discuss the possibility that selenium exerts its toxicity through consumption of intracellular reduced glutathione, thus leading to severe oxidative stress.
منابع مشابه
Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks
Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H(2)Se/HSe(-/)Se(2-)). Among the genes whose deletio...
متن کاملGreen synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae
Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...
متن کاملSelenite Protection of Tellurite Toxicity Toward Escherichia coli
In this work the influence of selenite on metal resistance in Escherichia coli was examined. Both synergistic and antagonistic resistance and toxicities were found upon co exposure with selenite. In wild type cells co-exposure to selenite had little effect on arsenic resistance, decreased resistance to cadmium and mercury but led to a dramatically increased resistance to tellurite of 32-fold. D...
متن کاملYeast as a model system to study metabolic impact of selenium compounds
Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se form...
متن کاملCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae
Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 12 شماره
صفحات -
تاریخ انتشار 2007